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Figure 1: Parachute

1 Introduction

In this part, we consider wheel-free bipartite graphs G which are signable to
be balanced and contain a parachute configuration. A parachute II, denoted
by I = Par(P,, P2, M,T), has side paths P, = v;,...,z and P = v,...,2
where | Py |+|P2| > 3, top pathT = v,,...,v, and middle pathM = v,m,...,2
where v is adjacent to nodes v, and v;. See Figure 1.

The node z is called bottom node, v, and v, are called side nodes and
v is called center node. We assume w.l.o.g. that v € V°. It follows that
v,v2 € V" and z € V°. The nodes of V(II) \ {v,v1,v2,m} induce two
connected components called the top of I, induced by V(T') \ {v,v.}, and
the bottom of I1, induced by V(P,) U V(P) U V(M) \ {v,v1,v3,m}.

Recall from Part I that, for a path P = z,,22,...,Z,-1,Z,, we denote
by P the subpath of P joining 3 to Z,._,, i.e. V(P) = V(P)\ {z1,Z.}.
With this notation, the top of II is T and the bottom of II is induced by
V(AU V(R)U(V(M)\ {v,m}).

When |E(T)| = 2, the parachute II is said to have a short top; the
top is long when |E(T')| > 4. Similarly, the parachute II is said to have a
short middle when |E(M)| = 2, and long middle otherwise. Finally, when
|[E(P,)| = 1 or |E(P,;)| = 1, the parachute Il is said to have one short side;
otherwise, we say that II has long sides.

This part is organized as follows. In Section 2, we list all possible strongly
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adjacent nodes to a parachute II. In Sections 3 and 4, we list all possible
direct connections from the top of II to the bottom, avoiding N(v)U(N(v;)N
N(vz)). When no such path exists, the graph G has an extended star cutset
disconnecting the top of II from the bottom. When there is such a path, at
least one of the following possibilities arises. '

o The graph G contains no parachute with long sides. This case is treated
in Section 5 where we prove the existence of an extended star cutset
disconnecting G.

e The graph G contains a stabilized parachute. This concept is defined
in Section 6 where an extended star cutset is shown to disconnect G.

e The graph G contains a parachute with short middle path and long
sides, but G contains no stabilized parachute and no connected squares.
This case is treated in Section 7 where we prove the existence of an
extended star cutset.

o The graph G contains connected squares. This case is treated in Part

Iv.

e The graph G contains goggles. This case is treated in Part V.

2 Strongly Adjacent Nodes

Theorem 2.1 Let I = Par(P,P;,M,T) be a parachute in a wheel-free
bipartite graph G that is signable to be balanced. Let w € V(G) \ V(II) be a
strongly adjacent node to I1. Then w satisfies one of the following properties.
(1) w has ezactly two neighbors in 11 and both are in V(P,) or in V(P) or
in V(M) or in V(T),

(i) w is of one of the following types.

e Type a Node w € V© is adjacent to the neighbors of z in P, and P;
respectively and to no other node of I1.

e Type b Node w € V" is adjacent to one node in V(P,), to one node
in V(P,;) and to no other node of II.




. Type ¢ Node w € V¢ is adjacent to ezactly two nodes of 11, one of
which is the neighbor of z in M and the other is the neighbor of z in
B orin P,.

e Type d Node w € V" is adjacent to one node in V(M) \ {2}, to one
node in either V(P,) or V(P,;) (but not both) and to no other node of
II.

e Type e Node w € V" is adjacent to v, to one node in V(T) and to no
other node of I1.

o Type f Node w € V¢ is adjacent to one node in V(P,), to one node in
V(P;), to one node of V(M) and to no other node of II.

e Type g Node w € V° is adjacent to m, to two nodes in V(T') and to
no other node of Il.

e Type h Node w € V" is adjacent to v, to one node in V(T), one node
in V(M) \ {v} and to no other node of II.

o Type i Node w € V" is adjacent to v, to one node in V(T), to one
node in either V(P,) or V(P;) (but not both) and to no other node of
II.

When 11 has a short side, say P,, the following additional types of strongly
adjacent nodes can occur.

e Type j Node w € V¢ is adjacent to vy, to one node in V(M) and to
no other node of II.

o Type k Node w € V° is adjacent to one node in v(T)\ {v:}, to one
node in V(P,) and to no other node of Il.

e Type | Node w € V" is adjacent to the neighbors of v, in v(T) and
V(Py) respectively and to no other node of 1.

e Type m Node w € V" is adjacent to two nodes of V(M) \ {v}, to the
neighbor of v, on V(T') and to no other node of Il.

e Type n Node w € V° is adjacent {o vz, to one node in V(T), to one
node in V(M) \ {m} and to no other node of I1.
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When 11 has a short top and long sides, one additional type of strongly
adjacent node can occur.

e Type o Node w € V" is adjacent to two nodes of V(M) \ {v}, to the
unique node of V(T) and to no other node of 1.

Proof: In this proof, we assume that the short side, if any, is P,. We
first show that w cannot have more that three neighbors in II. Assume the
contrary. Then w has at least two neighbors in V(M)\{z}, else w has three or
more neighbors in V(P,)UV(P,)UV(T), contradicting the assumption that G
is wheel-free. Since w cannot have three or more neighbors in V(P)UV (M)
and V(P,) U V(M), it follows that w has no neighbor in V(P1) U V(FP,)
and exactly two neighbors in V(M). Since w cannot have three or more
neighbors in V(T') U {v}, this implies that w has two neighbors in V(T) and
is not adjacent to v. The nodes of V(IT)\ V(P,) induce a cycle with unique
chord vv; and w is strongly adjacent to it. Since w is not of Type 1, 2 or 3
of Theorem 1.3.3, we conclude that w has at most three neighbors in II.

Now, we divide the proof into the cases where w has two or three neighbors
in II.

Case 1 Node w has two neighbors w,,w, in II.

If both nodes belong to V(P,) or to V(P:) or to V(T) or to V(M),
then we are in Case (i) of the theorem. Now, we enumerate the other
possibilities.

Case 1.1 Node wy € V(P,) and w; € V(P,).

If w € V¢, then both w; and w, must be adjacent to z otherwise, if say
w; € V7 is not adjacent to z, there exists a 3PC(z,w;). Hence, w is of
Type a. If w € V", then w is of Type b.

Case 1.2 Node w; € V(P,) and w; € V(M) \ {z}.

If w € V¢, then both w; and w, must be adjacent to z, otherwise there
is a 3PC(z,w,) or a 3PC(z,w;). Hence w is of Typec. f w € V",
then w is of Type d.

Case 1.3 Node w; € V(P;) and w, € V(T)\ {v1}. The side path P, is short
since otherwise, there is a 3PC(z,v;). If w € V°, then w is of Type k.

If w € V", then both w; and w; are adjacent to v;, else there exists a
3PC(vi,w,) or a 3PC(v,w;). Hence w is of Type 1.
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Case 1.4 Node w, € V(T) and w, € V(M).

Assume w € V". Then w; = v, else there exists a 3PC(v,, w;) since we
have assumed that the short side, if any, is P,. Hence, w is of Type e.

Assume w € V¢. Then w; = v; or vy, else there exists a 3PC (v, w,).
Assume w.l.o.g. that w; = v,. Then P, is short, else there exists a
3PC(z,v;). Hence w is of Type j.

By symmetry, the four above subcases exhaust all the possibilities for
Case 1.

Case 2 Node w has three neighbors w,, w;,ws in II.
The nodes w;, w,, w; cannot all belong to any of the sets V(P YUV (M),
V(P,)LV (M), V(T)u{v}, V(P,)UV(P)UV(T), otherwise there exists
a wheel. This leaves the following possibilities.

Case 2.1 Node w; € V(P;) \ {z}, w, € V(M) \ {2} and w3 € V(P) \ {z}.

Assume w € V7. If w; # v, there exists a 3PC(w,v) and if w; = v,
there exists an odd wheel with center v. Assume w € V. Then w is of
Type f.

Case 2.2 Node w;, € V(B,), w; € V(M) \ {2} and w3 € V(T)\ {w1}.
If w € V¢, there exists a 3PC(w,v;). If w € V¢ and w, # v, there
exists a 3PC(vy, w2). So w is of Type i.

Case 2.3 Nodes w;,w; € V(M) and w3 € V(T) If w € Ve, there is a
3PC(ws,v). So w € V™. Let w, be the neighbor of w which is closest
tovin M.

If w; = v, then w is of Type h.

If w; # v and w3 is not adjacent to vy, then P, is short, otherwise there
exists a 3PC(v;,ws). Furthermore, ws is adjacent to v,, else there
exists a 3PC(v,,w3). Hence w is of Type m.

If ws is adjacent to both v, and v, then the top path is short and node
w is of Type m or o depending on whether II has a short side or not.

Case 2.4 Nodes wy,wp € V(T) and w3 € V(M)
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Ifw € V7, there exists a 3PC(v,w). Sow € V°. Let w, be the neighbor
of w which is closest to v, in T'. If wz = m, node w is of Type g. Now
we assume ws # m. If w; = v; and wy; = v,, then w is of Type f. If
w; # vy then P, is short, else there exists a 3PC(z,vz). Furthermore
w, = v,, else there exists a 3PC(z,v,). Then w is of Type n. O

Corollary 2.2 In a wheel-free balanced bipartite graph, all strongly adjacent
nodes described in Theorem 2.1 can ezist, except for a Type b(2.1] node w
having neighbors by € V(P;) and b; € V(P,) adjacent to vy and v, respec-
tively.

3 Parachute Modifications

Let I = Par(P,, P,,M,T) be a parachute with center node v € V¢ and
side nodes vy, v,. If II has long top, let S{IT) = N(v) U (N(v1) N N(vy)). If
IT has short top, let ¢t be the unique node of V(T') and let S(II) = N(v) U
(N(v1) N N(v2)) \ {t}. In this section and in the next one, we enumerate all
possible direct connections from the top of II to the bottom, avoiding S(II)
(the definition of a direct connection can be found in Part I).

Let @ = z,,...,zx denote a direct connection avoiding S(II), where z, is
adjacent to V(B,)U V(B U (V(M)\ {v,m}) and z, is adjacent to V(T). It
follows from the definition of a direct connection that, for 2 < 7 < n—1, the
node z; is not adjacent to V(II) \ {v1,v2,m}. Furthermore, since @ avoids
S(I1), node z; is adjacent to at most one of the two nodes v;,v,. To reduce
the number of possible path types that need to be enumerated in the main
theorem of this section (Theorem 3.4), we introduce the concept of parachute
modification.

Definition 3.1 Let I1 = Par(P,, P;, M,T) be a parachute with center node
v € V¢, bottom node z and side nodes vy, v;.

Parachute modifications at the top are defined as follows.

Type 1 Assume y € V(G) \ V(I1) has exactly two neighbors in I, both are
in V(T) and at least one is in T. A parachute modification of Type 1
at the top consists of replacing 11 by the unique parachute II' which is
induced by a subset of V(I1) U {y} and is distinct from II.
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Type 2 For k 2 2 and y; € V(G)\ V(I), 1 £ j <k, assume yy,...,yx is
~ a chordless path such that

(i) Node y, is adjacent to either vy or v,, say vy, ard to no other node
of II.

(it) yi € V© is adjacent to one node of V(T) \ {v1} and to no other
node of II.

(iii) For 2 < j < k — 1, node y; has no neighbor in II.

A parachute modification of Type 2 at the top consists of replacing

IT by the unique parachute II' which is induced by a subset of v(nu
{v1,-..,yx} and is distinct from II.

Parachute modifications at the bottom are defined as follows.

Type 1 Assume y € V(G) \ V(II) has ezactly two neighbors in II and both
are in V(P,) or V(P,) or V(M) \ {v}. A parachute modification of

Type 1 at the bottom consists of replacing Il by the unique parachute
IT' which is induced by a subset of V(M) U {y} and is distinct from II.

Type 2 Assumey € V° is a strongly adjacent node of Type f[2.1] with neigh-
bors n; € V(P,), ny € V(P,) and nz € V(M). Furthermore assume
that, if ny = v, then P, is short and if n, = v, then P, is short. A
parachute modification of Type 2 at the bottom consists of replacing I1
by the unique parachute II' which is induced by a subset of V(M) U {y}
and has bottom node y.

Type 3 Assume w.lo.g that the side path P, of Il is long. For k > 2 and
y; € V(G)\V(II), 1 £ j < k, assume y,...,yx is a chordless path
such that

(i) Node y, is adjacent to v, and to no other node of I1.

(ii) Node yx € V© is adjacent to one node of V(P,) and to no other
node of I, or yi is a strongly adjacent node of Type c or j[2.1], adjacent
to nodes in M and P,.

(tit) For 2 < j <k —1, node y; has no neighbor in Il.

A parachute modification of Type 3 at the bottom consists of replacing
I1 by the unique parachute I which is induced by a subset of V(II) U
{v1,-.-,yx}, has top path T and is distinct from II.
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Type 4 Fork>2andy; € V(G)\V(Il), 1 £ j <k, assume y1,...,Yx 15
a chordless path such that

(i) v1 is adjacent to m and to no other node of II.

(i) yx € V° is adjacent to one node of V(M) \ {m} and to no other
node of Il, or yi is a strongly adjacent node of Type a[2.1].

(iit) For 2 < j <k —1, node y; has no neighbor in II.

A parachute modification of Type 4 at the bottom consists of replacing
I1 by the unique parachute II' which is induced by a subset of V(II) U
{y1,---,¥yx}, has top path T and is distinct from II.

Remark 3.2 (i) If 11 is a parachute with long top, then II' obtained from 11
by parachute modification has also long top.

(i) If T1 is a parachute with long sides, then II' obtained from II by
parachute modification has also long sides.

Let I1 be a parachute and Q) = z,,...,z, a direct connection from bottom
to top avoiding S(IT). Assume n > 2. A parachute modification relative to

V(Q) is a parachute modification of II which only involves the nodes of
V(II)u v(Q).

Theorem 3.3 Let G be a wheel-free bipartite graph that is signable to be
balanced. Let Il = Par(Py, P2, M,T) be a parachute and Q) = z,,...,z, be a
direct connection from bottom to top avoiding S(II) such that no parachute
modification ezists relative to V(Q).

(i) If I1 has long top and long sides, then n > 2 and Q is of one of the
following types.

e Type a Node z, is a strongly adjacent node to I1, adjacent to vy, m and
some node b € V(P,). Node z, is not strongly adjacent to I and its
unique neighbor t € V(T) is adjacent to v,. Ezactly one of the nodes
zj, for2 < j <n—1, is adjacent to m and none is adjacent to vy, vs.

e Type b Node z,, is adjacent to v,,m and some node t € V(T) Node z,
is not strongly adjacent to Il and its unique neighbor b € V(P,) is ad-
jacent to v,. For2 < j < n—1, x; has no neighbor in I1. Furthermore,
IT has a short middle path.
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e Type c Node z, is adjacent to v, m and some node b € V(Pl). Node
'z, is adjacent to v;,m and some nodet € V(T). For2 < j<n-1,
z; has no neighbor in II.

e Connected 6-hole Node z, is a Type b[2.1] node having neighbors
b € V(f’l) and b; € V(Pg) adjacent to vy and vy respectively. Node
T, is not strongly adjacent and its neighbor t € T belongs to V™. For
2<j <£n—1, z; has no neighbor in II.

(1) If 11 has short top and long sides, then either n = 1 and the only node
of Q is of Type of2.1], or n > 2 and Q is of Type a (this theorem) or is of
Types d, e or f described below.

e Type d Node z, € V° is not strongly adjacent to Il and its unique
neighbor belongs to V(M) \ {m}. Node z, is not strongly adjacent to
II. For2 < 3 <n—1, z; has no neighbor in II.

e Type e Node z, € V" is not strongly adjacent to 11 and its unique
neighbor, say b, belongs to V(M) \ {m}. Node z,, is not strongly adja-
cent to I1. Node m is adjacent to b and to exactly one of the nodes z;,
for 2 < j < n—1. Nodes vy,v, are not adjacent to V(Q).

o Type f Node z, is a strongly adjacent node of Type af2.1]. Node z,, is
not strongly adjacent to I1. For 2 < j < n —1, z; has no neighbor in

IT.

(i1i) If 11 has a short side, say P,, then either n = 1 and the only node of
Q ts of Type k, I, m or nf2.1], orn > 2 and Q is of Type b (this theorem) or
is of Types g, h, 4, j, k, |, m, n, o, p or q described below.

e Type g Nodes z,,t, € V" are not strongly adjacent to Il and their

respective neighbors b € V(P,) and t € V(T) are adjacent to v,. For
2<j<n-—1, z; has no neighbor in II.

e Type h Nodes z,,z, € V° are nol strongly adjacent to Il and their
neighbors belong to V(P,) and V(T') respectively. For 2 < j < n —1,
z; has no neighbor in II.

e Typei Nodes z, € V" and x, € V° are not strongly adjacent to II, the
neighbor of z, belongs to V(M) \ {m} and the neighbor of z,, in V(T)
is adjacent to v;. For2 < j < n —~1, z; has no neighbor in II.
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e Type ) Node z, is a strongly adjacent node of Type j{2.1] and =, € V"
" 1s not strongly adjacent to I1. For 2 < j < n — 1, z; has no neighbor
in II.

e Type k Node z,, is not strongly adjacent to Il and the neighbor of z,,
in V(T) is adjacent to v;. Node z, € V7 is not strongly adjacent to
Il end its unique neighbor, say b, belongs to V(M) \ {m}. Node m is
adjacent to b and to ezactly one of the nodes z;, for2 < j < r —1.
Nodes v,,v; are not adjacent to V(Q).

o Type | Node z, is a strongly adjacent node of Type g[2.1]. Node z, €
V7" is not strongly adjacent to Il and its unique neighbor, say b, belongs
to V(M) and is adjacent to m. For 2 < j < n—1, z; has no neighbor
in I1.

e Type m Node z,, is a strongly adjacent node of 141 gf2.1]. Node
Ty € V© is not strongly adjacent to I1 and its unique neighbor, say b,
belongs to V(Pl) and is adjacent to 2. For2 < i < j < n-1, z;
is adjacent to m, z; is adjacent to vy and no other adjacencies ezist

between V(Q) and V(I1). Furthermore Il has shori middle path.

e Type n Node z, is a strongly adjacent node of Type g[2.1]. Node
zy € V°© is not strongly adjacent to 11 and its unique neighbor, say b,
belongs to V(f’,). For2 < j <i<n-1, z; is adjacent to m, x; is
adjacent to v, and no other adjacencies ezist between V(Q) and V(II).

o Type o Nodes z;,x, € V¢ are not strongly adjacent to I1 and their
neighbors belong to V(P,) and V(T) respectively. Node v, is adjacent
to two nodes of V(Q), say z; and z;.. Node m is adjacent to node z;
and to another node of V(Q), say z;, where k <1 < . Node vy is not
adjacent to V(Q).

¢ Type p Nodes z, € V" and z, € V* are not strongly adjacent to II.
The unique neighbor of x, in Il belongs to V(M) and is adjacent to m.
One of the nodes z;, for 2 < j < n — 1, is adjacent to m and to v,.
The other nodes of V(Q) are not adjacent to II.

e Type q Nodes z, € V¢ and z, € V" are not strongly adjacent to
[I. The unique neighbor of 1 in Il belongs to V(P,) and the unique
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neighbor of z,, is adjacent to v;. One of the nodes z;, for2 < j <n-—1,
" is adjacent to v,. Two nodes i, Tk, for j < k <i<n-—1 are adjacent
to m. The other nodes of V(Q) are not adjacent to II.

Proof: First, we consider the case n = 1, i.e. @ consists of a single node
which is strongly adjacent to I. Then it follows from Theorem 2.1 that this
node is of Type k, 1, m, n or o[2.1}.

Now consider the case n > 2. By Theorem 2.1, either z,, is not strongly
adjacent to IT or it is a strongly adjacent node of Type g[2.1]. Similarly,
either z, is not strongly adjacent to Il or it is a strongly adjacent node of
Type a, b, c, d, f or j[2.1]. We will divide the proof into two parts, depending
on whether z, is of Type g{2.1] or is not strongly adjacent to II. Then, in
each of the two parts, the proof will be broken down further based on the
adjacencies between {z3,...,z,-1} and {v;,v;,m}. Finally, subcases will
occur depending on the type of node z;. The two following claims reduce
the number of cases that have to be considered.

We say that node z; € V(Q) adjacent to m but not v; or v; and node z; €
V(Q) adjacent to v; or v, but not m are consecutive in @ if no intermediate
node of the z,z;-subpath of Q is adjacent to at least one node in {m,v;,v,}.
When z; = z;, we also say z; and z; are consecutive in Q.

Claim 1 If z;,z; € V(Q) are consecutive in @), where z; is adjacent to
m and z; is adjacent to v, then P, is short.

Proof of Claim 1: Let Q;; be the r;z;-subpath of Q. Now V(Q,;)UV(T)U
V(P,) U V(M) induces an odd wheel with center v unless P, is short. This
proves Claim 1.

Claim 2 There does not exist nodes z;,z; € V(Q) such that z; is adjacent
to v; and z; is adjacent to v,. N

Proof of Claim 2: Choose nodes zi,z; € V(Q) such that z; is adjacent
to vy, z; is adjacent to v, and the subpath Q;; of @ connecting them is
shortest. The length of the path Q;; is at least 2, since z; = z; would imply
that z; € S(II), a contradiction to the definition of Q. First assume that
neither z; nor z; is adjacent to m. If no intermediate node of Q;; is adjacent
to m, there exists a parachute modification of Type 2 at the top. Otherwise
there exist (possibly coincident) nodes z;, z; adjacent to m such that z; and
T, are consecutive in Q and z; and z; are consecutive in Q. By Claim 1, this
implies that both P; and P, are short, a contradiction. Now assume that z;

13
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is adjacent to m. Since z; is also adjacent to v, it follows that P; is short.
Therefore P, is long and z; is not adjacent to m. Furthermore, by Claim 1,
no intermediate node of Q;; is adjacent to m. This implies the existence of
a parachute modification of Type 3 at the bottom. This proves Claim 2.

Part 1 Node z,, is of Type g[2.1]

It follows from the definition of @ that z, is not adjacent to both v, and
ve. Assume w.lo.g. that z, is not adjacent to v,. Let T} and T, be the
chordless paths from z, to v; and from z, to vy which only use nodes of
V(T)U {z.}. Let P, =T, P, = T3,v,v; and P; be any chordless path from
z,, to v; with nodes in V(Q)UV(P,)UV(P)UV(M)\{m}. Since G is signable
to be balanced, the paths Py, P;, P; do not form a 3PC(z,,v,). This implies
that v, is adjacent to at least one node of V(ﬁa). Now let Pé = Zp,m, v, v;.
Since the paths P,, P,, P; do not form a 3PC(z,,v,), node m is adjacent to
at least one node of V(P3). It follows from Claims 1 and 2 that @ contains
no node adjacent to v,.

Case 1 N(V(Q)) N {vy,v2,m} = 0.

Case 1.1 Node z; is not strongly adjacent to II.

Let b b_e the node of Il adjacent to z,. Since both v; and m are adjacent
to V(Ps), it follows that either b is adjacent to v, and m is adjacent to
z, or b is adjacent to m and v, is adjacent to z. Furthermore, in both
cases, node z,, is adjacent to v,, else there is a 3PC(z,,v;). This yields
paths @ of Types b and | respectively.

Case 1.2 Node z; is strongly adjacent to II.

Since v, and m must be adjacent to V(Ps), it follows that z; is not of
Type a, b, c or d[2.1]. If z; were of Type j[2.1], then it would have to
be adjacent to both v, and m, contradicting the fact that z, is adjacent
to a node of V(IT) \ N(v). The last case to consider is when z, is of
Type f[2.1] and is adjacent to v;,m and a node b € V(P;). Then we
must have z, is adjacent to v,, else there is a 3PC(z,,v;). This yields
a path @Q of Type c.

Case 2 N(V(Q)) N {v1,v3,m} = {v}.

Node z,, is adjacent to vy, else there is a 3PC(zn, v2). Since there is no
wheel, () contains exactly one neighbor of v,.
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Case 2.1 Node z, is not strongly adjacent to II.

Let b be the node of 11 adjacent to ;. Since m must be adjacent to P,
it follows that either b € V(Pz) and m is adjacent to z, or b€ V(M) is
adjacent to m. If b € V(P,) is adjacent to v,, then there is a wheel with
center v,. If b € V(P,) is not adjacent to v,, then there is a parachute
modification of Type 3 at the bottom relative to V (@), a contradiction.
If b is adjacent to m, then either there is a 3PC(z,v2) when P; is long,
or there is a wheel with center v, when P, is short.

Case 2.2 Node z, is strongly adjacent to II.

Since m must be adjacent to P, it follows that z; is not of Type a,
b or d[2.1]. If z, is of Type c[2 1], the middle path M must be short,

ie. r; is adjacent to m. If z, is adjacent to m and to b € V(P,), there
is a 3PC(zy,v2). If ; is adjacent to m and to b € V(Pl) there is a
parachute modification of Type 3 at the bottom relative to V(Q), a
contradiction to our choice of II and Q. If z; is of Type j[2.1], then it
cannot be adjacent to m by definition of @, a contradiction. If z; is of
Type {[2.1] and is adjacent to v,, there is a wheel with center v,. If z,
is of Type f[2.1] and is not adjacent to vy, there is a 3PC(z,,v2).

Case 3 N(V(Q)) N {v1,v3,m} = {m}.

Since there is no wheel, Q contains exactly one neighbor of m.

Case 3.1 Node z, is not strongly adjacent to II.

Let b be the neighbor of z, in II. If b € V(M) \ {v,m} is adjacent to
m, there is a wheel with center m. If b€ V(M) \ {v,m} isin V¢ but is
not adjacent to m, there is a 3PC(m,b). If be V(M) \ {v,m}isin V7,
there is a parachute modification of Type 3 at the bottom. It follows
that b€ V(P,) U V(P,). Since v, must be adjacent to Ps, b is adjacent
to v, and P, is long. Now, there is a 3PC(m, b).

Case 3.2 Node z; is strongly adjacent to II.

If 2, is of Type a[2.1], then there is a parachute modification of Type
4 at the bottom, relative to V(Q), a contradiction. Since v; must be
adjacent to P, it follows that z, is not of Type b, c or d (Theorem 2.1).
If z; is of Type f or j[2.1], then either it is adjacent to m and there is
an odd wheel with center m, or it is not and there is a 3PC(m, z,).
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Case 4 NV(@)) N {vy,v2,m} = {v,m}.

Node z,, is adjacent to v, else there is a 3PC(z,,v;). Furthermore P,
is short, by Claim 1. Let z; € V(Q) be the neighbor of v, closest to T,
in @ and z; € V(Q) the neighbor of m closest to z,. Note that ¢ = j
is possible.

Case 4.1 Node z, is not strongly adjacent to II.

Let b be the neighbor of z; in II. If b € V(M) \ {v,m}, there is an
odd wheel with center v,. So b € V(P,). This implies that z; is the
only neighbor of v; in Q and z; is the only neighbor of m in Q, else
there is a wheel with center v; or m respectively. Furthermore b € V7,

else there is a 3PC(b,m). When node z; is strictly closer to z, than
z; on the path Q, b is adjacent to z, else there is a 3PC(b, z). Node
m is adjacent to z, else there is a 3PC(m, z). This yields a path @ of
Type m. When node z; is closer to z, than z; on the path @, or when
z; = z;, the path @ is of Type n.

Case 4.2 Node z; is strongly adjacent to II.

If z, is of Type a, f or j[2.1], then there is a wheel with center v;. If
z; is of Type c[2.1], with neighbors in P, and M, then there is an odd
wheel with center v. If z, is of Type d[2.1}, with neighbors in P, and
M, then there is a 3PC(z,, 2).

Part 2 Node z,, is not strongly adjacent to II.
Let t be the neighbor of z,, in II.

Case 1 N(V(Q)) N {vy,v2,m} = 0.

Case 1.1 Node z, is not strongly adjacent to II.
Let b be the neighbor of z, in II.

Case 1.1.1 be V(B)

Then node z is adjacent to v,, else there is a 3PC(z,v2). The nodes b
and t belong to the same side of the bipartition, else there is a 3PC(b, t).
If bt € V<, then they are both adjacent to v, else there is a 3PC(b, v;)
or a 3PC(t,v;). This yields paths Q of Types g or h.
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Case 1.1.2 be V(M) \ {v,m}
" Then b € V", else there is a 3PC(b,v;) or 3PC(b, vs).

If the top path of II is long, assume w.l.o.g. that ¢ is not adjacent to
v;. Then node z is adjacent to v, else there is a 3PC(z,v;). Node t is
adjacent to v., else there is a 3PC(z,v;). This yields a path @ of Type
i

If the top path of II is short, then the path @ is of Type d when the

side paths are long and the path Q is of Type i when II has a short
side.

Case 1.2 Node z; is strongly adjacent to II.
Case 1.2.1 Node z; is of Type a[2.1].

If one side path of II is short, say P, then there is a wheel with center
v,. If the top path is long, there exists a 3PC(z1,v1) or a 3PC(z1,v2).
So the top path is short and the side paths are long, yielding a path @
of Type f.

Case 1.2.2 Node z; is of Type b[2.1].

Let by, b; be the neighbors of r; in P, and P, respectively. If b, is not
adjacent to vy or b, is not adjacent to v,, there exists a 3PC(z,z,). If
b, is adjacent to v; and b, is adjacent to v, then t € V7, else there is a
3PC(t,z;). This yields a connected 6-hole.

Case 1.2.3 Node z; is of Type c[2.1].

Assume w.l.o.g. that z; has neighbors in V(M) and V(P;). Since z,
is not adjacent to v, there is a 3PC(21,v2).

Case 1.2.4 Node z, is of Type d[2.1].
There is a 3PC(zx,, 2).

Case 1.2.5 Node 1, is of Type {[2.1].

Node z, is not adjacent to both v;,v,. If z; is not adjacent to vy, there
is a 3PC(z1,v1). If 7, is not adjacent to vs, there is a 3PC(z,,vs).

18




Case 1.2.6 Node z, is of Type j[2.1].

Assume w.l.o.g. that z is adjacent to v;. This implies that ¢ is not
adjacent to v;, else there is an odd wheel. Then t € V", else there is a
3PC(t,vp). This yields a path Q of Type j.

Case 2 N(V(Q)) N {vy,v3,m} = {m}.

Case 2.1 Node z; is not strongly adjacent to II.
Let b be the neighbor of z; in II.

Case 2.1.1 be V(P).
Node b € V", else there is a 3PC(m, b) and node t € V¢, else there is
a 3PC(v,t). This implies the existence of a 3PC(b,1).

Case 2.1.2 be V(M) \ {v,m}.

The set V(Q)U{b} contains at most two nodes adjacent to m, otherwise
there is a wheel. If it contains only one neighbor of m, say z;, there
is a 3PC(z;,v1). So, V(Q)U {b} contains exactly two neighbors of m.
If b is not one of them, there is a parachute modification of Type 4 at
the bottom. If the top path of II is short, this yields a path @ of Type
e. If the top path of II is long, assume w.l.o.g. that t is not adjacent
to v;. Node t € V¢, else there is a 3PC(v,t). This implies that v, is
adjacent to z, otherwise there is a 3PC(t,v,). Since v, is not adjacent
to z, then t is adjacent to v,, else there is a 3PC(t,v;). This yields a
path @ of Type k.

Case 2.2 Node 1, is strongly adjacent to II.

Case 2.2.1 Node z; is of Type a [2.1].
There is a parachute modification of Type 4 at the bottom.

Case 2.2.2 Node z, is of Type b or d[2.1].
There is a 3PC(x, 2).

Case 2.2.3 Node 1, is of Type ¢ [2.1].

Node z, is adjacent to m, else there is a 3PC(z1,m). But now there
is a wheel with center m, since x, is not adjacent to v, or v,.
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Case 2.2.4 Node z; is of Type { [2.1].

Node z, is adjacent to m, else there is a 3PC(z;,m). Let n; and n,
be the neighbors of z; in P, and P; respectively. Assume w.l.o.g. that
ny # vy. If ny # vy, there is a parachute modification of Type 2 at the
bottom. Finally ¢ is the neighbor of v, in T, otherwise there is a wheel
with center m. This yields a path @ of Type a.

Case 2.2.5 Node z, is of Type j [2.1].

There is a 3PC(z,,m), since by definition of @, node z, is not adjacent
to m.

Case 3 N(V(Q)) N {vy,v2,m} = {0}

Node t is adjacent to v;, otherwise there is a parachute modification of
Type 2 at the top or a 3PC(t,v,).

Case 3.1 Node z; is not strongly adjacent to II.
Let b be the neighbor of z; in II.

Case 3.1.1 be V() \ {n1}.

If b is adjacent to v;, there is a wheel with center v,. Otherwise, there
is a parachute modification of Type 3 at the bottom or a 3PC(b, vy).

Case 3.1.2 be V(M)\ {m}.

There is a wheel with center v,.

Case 3.1.3 be V(P,).

Node b is adjacent to v,, else there is a wheel with center v;. This
yields a 3PC(d,v1).

Case 3.2 Node z; is strongly adjacent to II.
Case 3.2.1 Node z; is of Type a[2.1].

If P; is long, there is a wheel with center vy. If P, is short, there is a
wheel with center v,.

Case 3.2.2 Node z; is of Type b, c or d[2.1].

There is a wheel with center v,.
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Case 3.2.3 Node z, is of Type f [2.1].

If z;, is adjacent to v;, there is a wheel with center v,. If z; is not
adjacent to vy, there is a 3PC(zy,v1).

Case 3.2.4 Node z; is of Type j [2.1].

If z, is adjacent to v,, there is a wheel with center v;. If z, is adjacent
to v, then there is a parachute modification of Type 3 at the bottom,
a contradiction.

Case 4 N(V(Q)) N {v1,v2,m} = {vy,m}.

As a consequence of Claim 2, the parachute II has short side P,. Let
z; € V(Q) be the neighbor of v, closest to t in Q and z; € V(Q) the
neighbor of m closest to t. Note that i = j is possible.

If z; is strictly closer to ¢ than z;, then either there is a parachute
modification of Type 2 at the top (when t € V") or there is a 3PC(v,, t)
or a wheel with center v, (when t € V¢).

If z; = z; and t € V*, then there is a 3PC(v,,t) or an odd wheel with
center v3. Sot € V",

If z; is strictly closer to ¢ than z; and there is no other neighbor of m
on the subpath of Q connecting ¢ to z;, then there is a 3PC(v,, 2;). So
there are two neighbors of m on the subpath of @ connecting t to z;,
say z; and zx. Furthermore, t € V¢, else there is a 3PC(v,1), and t is
adjacent to vy, else there is a 3PC(vy, t).

Case 4.1 Node t € V" and z; = z;.

Case 4.1.1 Node z; is not strongly adjacent to II.
Let b be the neighbor of z; in II.

Case 4.1.1.1 be V(D).

There is a 3PC(z;,t) unless the path @ contains a neighbor z; of v,
which is distinct from z;. Now there is a wheel with center v, unless
the path @ contains a neighbor x; of m which is distinct from z;. Note
that if | < k, then there is again a 3PC(z;,t). So we must have | > k.
If b€ V¢, there is a 3PC(b,m). This yields a path @ of Type o.
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Case 4.1.1.2 b€ V(M) \ {v,m}.

If vy is adjacent to a node of V(Q) distinct from z;, there is a wheel
with center v,. If b € V", then either m is adjacent to a node of V(Q)
distinct from z; and there is a parachute modification of Type 4 at the
bottom, or m is only adjacent to z; in V(Q) and there is a 3PC(z;, b).
If b € V¢, then b must be adjacent to m, else there is a 3PC(b,m).
This yields a path @ of Type p.

Case 4.1.2 Node z; is strongly adjacent to II.

If z; is of Type a[2.1], then either m is adjacent to a node of V(Q)
distinct from z; and there is a parachute modifi~ation of Type 4 at the
bottom, or m is only adjacent to z; in V(Q) anu there is a wheel with
center v;.

If z, is of Type c[2.1], then there is a wheel with center v.
If z, is of Type d[2.1], then there is a 3PC(z,, 2).

If z, is of Type f[2.1], then there is a parachute modification of Type 2
at the bottom.

If z, is of Type j[2.1], then there is a wheel with center v;.
Case 4.2 Node t € V° is adjacent to vy, node m is adjacent to z;,z; on @
and v, is adjacent to x;, where j < k < i.
Case 4.2.1 Node z, is not strongly adjacent to II.
Let b be the neighbor of z; in II.
Ifb€ V(P,), then b € V7, else there is a 3PC(b,m). This yields a path
Q@ is of Type q.
If b€ V(M) \ {v,m}, then there is a wheel with center v,.
Case 4.2.2 Node z; is strongly adjacent to II.
If , is of Type a[2.1], then there is a wheel with center v,.

If 2, is of Type c[2.1], then there is a 3PC(z,,m) if z; is not adjacent
to m and a wheel with center m if z, is adjacent to m.

If z, is of Type d[2.1], then there is a 3PC (x4, 2).
If z; is of Type f or j[2.1], then there is a wheel with center v,. O
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Corollary 3.4 In a wheel-free balanced bipartite graph, all direct connections
described in Theorem 3.3 can ezxist, except for the connected 6-hole.

In the remainder of the paper, we consider a wheel-free bipartite graph
G that is signable to be balanced and contains no connected 6-hole.

4 Connections from Bottom to Top

In this section, we continue the study of direct connections @) from bottom
to top of a parachute. These connections were considered in Theorem 3.3
under the assumption that all possible parachute modifications relative: to
V(@) had been performed. Here we describe the possible direct connections
before parachute modifications are performed.

Theorem 4.1 Let G be a wheel-free bipartite graph that is signable to be
balanced and contains no connected 6-hole. Let I1 = Par(P,,P;,M,T) be a
parachute and let Q = zq,...,2, be a direct connection from bottom to top
avoiding S(II).

(i) If 1 has long top and long sides, then n > 2 and @ is of Type a, b or
c[3.9] or of one of the following types, see Figure 4.

e Type al Node z, is a strongly adjacent node to I, adjacent to vi,m
and some node b € V(P;). Node x, is strongly adjacent to 11, adjacent
to v; and to t € V(T). Ezactly one of the nodes zj, for2<j3<n-1,
is adjacent to m and none is adjacent to vy, v;.

e Type bl Node z,, is a strongly adjacent node to Il, adjacent to v;,m
and some node t € V(T'). Node x, is strongly adjacent to Il, adjacent
to v, and to b€ V(P;). For2 < j <n—1, node z; has no neighbor in
I1. Furthermore, Il has a short middle path.

e Type b2 Node z, is a strongly adjacent node to Il, adjacent to v,,m
and some r.ode t € V(T). Node z, € V° is not strongly adjacent to
I and its unique neighbor belongs to V(P,). Ezactly one of the nodes
zj, for 2 <3 <n -1, ts adjacent to v, and none is adjacent to vy, m.
Furthermore, Il has a short middle path.




o Type b3 Node z,, is a strongly adjacent node to I1, adjacent to vs,m
and some node t € V(T). Node z, € V' is strongly adjacent to I,
adjacent to by, b, € V(P,). Ezactly one of the nodes z;, for2 < 3 <
n — 1, is adjacent to v, and none is adjacent to vi,m. Furthermore, Il
has a short middle path.

(1) If 11 has short top and long sides, then either n = 1 and the only node
of Q is of Type o[2.1], or n 2 2 and Q is of Types a, d, e or f[3.3] or of one
of the following types. See Figure 4.

e Type d1 Node z, € V" is strongly adjacent to Il and its two neighbors
both belong to V(M) \ {v,m}. Node z, is not strongly adjacent to H
For 2 < j £ n—1, node z; has no neighbor in II.

o Type el Node z, € V* is not strongly adjacent to Il and its unique
neighbor, say b, belongs to V(M) \ {m}. Node z, is not strongly adja-
cent to II. Node m is adjacent to exactly two of the nodes z;,zx, for
2<j<k<n-1. Nodes v,,v; are not adjacent to V(Q).

e Type e2 Node x, € V" is strongly adjacent to Il and its two neighbors
both belong to V(M) \ {v,m}. Node z, is not strongly adjacent to Il.
Node m is adjacent to exactly two nodes zj,zx, for2 < j <k <n-1.
Nodes vy, vz are not adjacent to V(Q).

e Type e3 Node z, is a strongly adjacent of Type af2.1]. Node z., is not
strongly adjacent to I1. Node m is adjacent to exactly two nodes zj, z,
for2 < j < k<n-—1. Nodes vy,vy are not adjacent to V(Q).

e Type e4 Node z; is a strongly adjacent of Type f adjacent to m,b;, €
V(ﬁ,) and b, € V(P,). Node z,, is not strongly adjacent to I1. Node m
is adjacent to ezactly one of the nodes zx, for 2 < k < n —~1. Nodes
vy, v, are not adjacent to V(Q).

(iii) If I1 has a short side and G contains no parachute with long sides,
then I1 has short top and either n = 1 and the only n.de of Q is of Type
I[2.1], or n > 2 and Q is of Type g{3.3] or as described below. See Figure 4.

e Type gl Nodes z,, is not strongly adjacent to II and its neighbor is
the unique node t € V(T). Node z, is strongly adjacent to Il and has
neighbors vy and b € V(P). For2 < j < n-—1, node z; has no neighbor
in 1.
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Figure 4 (cont.)
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Figure 4: More direct connections from bottom to top

o Type g2 Nodes z, is not strongly adjacent to II and its neighbor is
the unique node t € V(T). Node z, is strongly adjacent to Il and has
ezactly two neighbors in V(P,). Furthermore, one of these neighbors is
adjacent to vy. Node z, is adjacent to v, and, for3 < j <n—1, node
z; has no neighbor in II.

Proof: We denote by II', Q° a parachute and a direct connection such
that exactly 7 parachute modifications must be performed relative to V(Q*)
in order to obtain a parachute and a direct connection described in Theorem
3.3. With this notation, Theorem 3.3 describes all pairs I1°,Q°. To prove
Theorem 4.1, we describe all pairs II°, Q* that give rise to a pair II'"1, Q1.
In this proof we will show that at most two parachute modifications can be
performed relative to the nodes of a direct connection, that is,1 < 2.

Our proof uses two properties that follow from the definition of parachute
modifications:

Property 4.2 Let II'"!,Q'"! be obtained from IT*, Q* by a parachute
modification relative to V(Q*). Let Q*~! = r,,...,z,. The nodes z, and z,
have exactly one neighbor in V(I1'-?) \ {v;,v2,m}.

Property 4.3 Let II'-', Q' be obtained from II‘, Q° by a parachute
modification at the bottom relative to V(Q'). Let Q' = zy,...,z,. If
z; € V¢, then the parachute modification is of Type 1.
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(i) By Theorem 3.3(i), Q°® = z,...,z, must be of Type a, b or c[3.3]
relative to I1°.

Case 1 Path QY is of Type a[3.3] relative to I1°.

If IT*, Q! has a parachute modification of Type 1 at the top, then II*, Q!
is of Type al.

Assume 1!, Q! has a parachute modification of Type 2 at the top. Then
Q! contains a node adjacent to v; and another adjacent to m, namely, t
and z; respectively, using the notation of Theorem 3.3, Type a, applied
to 1%, Q°. Now the tz;-subpath of Q' together with the nodes of IT!
induce an odd wheel with center v. So no parachute modification. of
Type 2 occured at the top.

In I1° Q°, node z, is adjacent to vy, m and b € V(B,). If I1°,Q° was
obtained from IT!, Q! by a parachute modification at the bottom, then
the modification was necessarily of Type 1 and b must have been in
V(Q!) \ V(I1!) since v; and m remain unchanged. But then z; is a
strongly adjacent node which violates Theorem 2.1 relative to II.

The above proof shows that 12, Q% must yield I1', Q! of Type al after
one parachute modification. Assume I12, Q? has a parachute modifica-
tion of Type 1 or Type 2 at the top. Then (? contains a node adjacent
to v; and another adjacent to m. This shows the existence of an odd
wheel with center v. A parachute modification at the bottom cannot
occur either by the above argument.

Case 2 Path Q° is of Type b[3.3].

I1%, Q° cannot be obtained from I1!, Q! by a parachute modification at
the top, since otherwise node z, would violate Theorem 2.1 relative to
I1'. If 1% QO is obtained by a parachute modification of Type 1 at the
bottom, then IT', Q! is of Type bl. If it is obtained by a parachute
modification of Type 3 , then IT',@! is of Type b2.

If ', Q" is of Type bl or Type b2 and is obtained from I12,Q? by a
parachute modification, then I12,Q? is of Type b3. Now Property 4.2
shows that I12, Q? cannot be obtained by any parachute modification .

Case 3 Path Q° is of Type c[3.3].




No parachute modification at the bottom or the top can occur, else
node z; or z, violates Theorem 2.1 in II'.

(ii) Since IT has short top, no parachute modification was performed at
the top. By Theorem 3.3, Q° must be of Type 0[2.1] or of Type a, d, e or
{[3.3] relative to II°.

Case 1 Path Q° is of Type 0[2.1] or Type a[3.3].

No parachute modification can be performed at the bottom since node
z; in Q° would violate Theorem 2.1 with respect to II'.

Case 2 Path Q° is of Type d[3.3].

If I1° Q° is obtained by a parachute modification of Type 1 at the
bottom, then IT*, Q! is of Type d1. Property 4.2 shows that no further
parachute modification can occur.

Case 3 Path Q° is of Type €[3.3].

If 1I°,Q° is obtained by a parachute modification of Type 1 at the
bottom, then II', Q! is of Type el, where z; = z,. If II°, Q° is obtained
by a parachute modification of Type 2 at the bottom, then II', Q! is of
Type e2. If I1° Q° is obtained by a parachute modification of Type 4
at the bottom, there are two cases: If z; in Q! is not strongly adjacent
to IT*, then II!, Q! is of Type el. If z; is a strongly adjacent node to
IT! of Type a[2.1], then I}, @ is of Type €3.

IfI1', Q" of Type el is obtained from I1%, Q? by a parachute modification

of Type 1, then I12,Q? is of Type e4 and Property 4.3 shows that no
other parachute modification can be performed.

Property 4.2 shows that II', Q! of Type €2, €3 and e4 cannot be ob-
tained from I1%, Q2.

Case 4 Path QO is of Type {[3.3]. There cannot be any parachute modifica-
tion.

(iii) By Theorem 3.3(iii), the path Q° is either a single strongly adjacent
node of Type k, 1, m or n[2.1] or a path of Type b, g, h, i, j, k, I, m, n, o,
p or q (Theorem 3.3). It is easy to check that each of the configurations k,
m or nf2.1) and b, h, i, j, k, |, m, n, o, p or q[3.3] contains a parachute with
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long sides as an induced subgraph. This leaves only two cases: Type 1[2.1]
and Type g[3.3]. In both cases, there is a parachute with long sides, unless
the top path of II° is short.

Now consider the case where one or more parachute modifications oc-
cured. Since a short top in II° cannot arise by path modification at the
top, I1! and I1° have the same top path, and therefore II' has a short top.
Now consider the parachute modifications at the bottom that can give rise
to I1°,Q°. They are either of Type 1 or 3. If a parachute modification of
Type 3 was performed and the first node z, of Q! is not strongly adjacent
to Q°, then there is a parachute with long sides ( the center node is v;, the
top path is Q°). If the first node z; of Q' is strongly adjacent, then it is of
Type j[2.1], adjacent to v, and to a node in V(M). In this case there is a
parachute with long sides having v, as center and T as middle path.

If a single parachute modification of Type 1 was performed and the neigh-
bors of z; both belong to V(P,) in II° then there is a parachute with long
sides (the center node is z, and the middle path is Q). This yields Type gl.
If two parachute modifications of Type 1 were performed, then one of the
neighbors of r; must be adjacent to v,, else there is a parachute with long
sides. This yields Type g2. O

5 Parachutes with a Short Side

As in the earlier section, G is a wheel-free bipartite graph which is signable to
be balanced and contains no connected 6-hole. We show that, if G contains
a parachute with one short side but no parachute with long sides, then G
has an extended star cutset or contains an R;o configuration, as defined in
the introduction.

Theorem 5.1 Let G be a wheel-free bipartite graph which is signable to be

balanced and contains no parachute with long sides. Let Il = Par(P,, P,, M, T)
be a parachute with a short side, say P, = vy,z and let its middle path be

M =v,m,...,z. Then at least one of the following alternatives holds:

e The set S(I1) is an extended star cutset of G.
o The set N(v2) U(N(2)N N(v))\ {m} is an eztended star cutset of G.

e The graph G contains an Ry configuration.
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Proof: Since G contains no parachute with long sides, G contains no
connected 6-hole. If S(II) is not an extended star cutset then, by Theorem
4.1(iii), IT has short top v,,t,v; and, after possibly a parachute modification
at the bottom, there is a direct connection from bottom to top of Type g[3.3]
or of Type 1[2.1]. Denote by II', Q" the parachute and direct connection after
parachute modification, if any. The parachute I’ is identical to II except
possibly for path P, which is modified into P;. Note that II' induces another
parachute with short side, namely the parachute with center node v;, side
nodes v, z, top path M, middle path T and side paths P, and P, = v, v;.
Denote by II* this parachute. By definition, S(II*) = N(v2)U(N(z)NN(v))\
{m}. If S(II*) is not an extended star cutset then, by Theorem 4.1(iii), II*
has short top v,m, z and, there is a direct connection R’ from the bottom
of TI* to the top m of Type 1[2.1], Type g[3.3] , Type gl or g2[4.1]. Assume
first that R’ is a direct connection of Type g2 and its first node y} is adjacent
to v;. Node y; is adjacent to z. No node y;, k > 2, is adjacent to a node
in Q' else there is a direct connection violating Theorem 4.1. This implies
the existence of a wheel with center z. Hence the first node y] of R’ is not
adjacent to v1. This shows that if R’ is of Type g2, a parachute modification
can be performed at the bottom without changing the neighbor of Q' on P;.

Similarly, for Type gl, a parachute modification can be performed at the
bottom without changing the neighbor of Q" on P,. Let P, be the corre-
sponding modification of P, if any. Denote by II" the parachute obtained
from II by replacing P; by P,’. The endpoints of Q’, say z/, and z,, are ad-
jacent to t and to the neighbor a of v; on P} respectively, and the endpoints
of R, say y, and y, are adjacent to m and to the neighbor b of z on P,’. See
Figure 5.

To complete the proof of the theorem, we show the following result.

Claim: V(ITI")U V(Q') U V(R') induces an Ryo configuration.

Proof of Claim: If Q' and R’ have no common or adjacent node, then there
is an odd wheel. If any node of Q' other than z; is adjacent to or coincident
with a node of V(R'), then there is a direct connection from bottom to top
which is not of Type g[3.3} or Type gl, g2[4.1], a contradiction. Similarly, the
only node of R’ that can be adjacent to or coincident with a node of V(Q")
is y;. So assume z; is adjacent to y,. Node z is adjacent to t, else there
is a 3PC(x;,t). Similarly, y, is adjacent to m, else there is a 3PC(y,, m).
Finally, a is adjacent to b, else there is a 3PC(a,b). But now we have the
configuration Rjo (see Part I for the definition). This completes the proof of
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Figure 5: Parachute IT"

the claim and of the theorem. O

6 Stabilized Parachutes

In the remainder of this part, we consider bipartite graphs G which contain
a parachute with long sides. As in the earlier sections, we assume that G
is wheel-free, signable to be balanced and contains no connected 6-hole. In
this section, we make the further assumption that G contains a stabilized
parachute, as defined below. See Figure 6.

Definition 6.1 A stabilized parachute (II, R) consists of a parachute Il =
Par(P,, P, M,T) with long side paths P, = vy,a,...,2 and P, = v,,...,2,
a short middle path M = v,m,z and of a chordless path R = ry,...,ry,
k>1, wherer, € V\V(II) fori =1,...,k, such that node r, is adjacent to
node a and node r is adjacent to v. Nodes ry and r) do not have any other
adjacencies in Il than those just mentioned and nodes r; fori =2,...,k—1,
are not adjacent to any node of I1. Furthermore,

(1) any strongly adjacent node of Type f[2.1] relative to I1 which is adjacent
to vy must also be adjacent to vy, and
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Figure 6: Stabilized parachute

(i) any node in V \ (V(II)U V(R)) which has two neighbors in V(T) and
is adjacent to v, must also be adjacent to m.

In this section we prove that if G contains a stabilized parachute, then
G has an extended star cutset. It follows as a corollary that if G contains a
parachute with long top and long sides, then G has an extended star cutset.

Lemma 6.2 If G contains a parachute I with long sides having a direct
connection of Type a, b or c[8.3] or Type al, b1, b2 or b3[4.1], then G
contains a stabilized parachute.

Proof: We divide the proof in the following cases:

Case 1 Q = z,,...,2, is a direct connection of Type a[3.3].

Assume w.l.o.g. that Q is a shortest direct connection of Type a[3.3] and
let z; be the intermediate node of Q) adjacent to m. We use the notation of
Figure 3.

Case 1.1 There exists a node w adjacent to two nodes z, and z; in the
set {z,,...,z;} and to the neighbor m' of m in V(M) \ {v} but not adjacent
to v.
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Assume w.l.o.g. that i > f. Then the path § = w,z;,z;41,...,24 i5 a
direct connection from bottom to top in Il and Theorem 4.1 shows that S
must be a direct connection of Type €[3.3]. Hence the top path T of Il must
be short.

If 24 # z,, the hole w, z;, iy1,...,Zn,t, 01,21, b,...,2,...,m',w induces
an odd wheel with center m.

If z; = z,, consider the extended parachute (II”, R) having node z; as
center, nodes w and b as side nodes and z;,v,,t as middle path. The path
R= T2ye.oyTi-1-

No node of Type f[2.1] relative to II” is adjacent to b, v; and a node z;,
1 < I < n. For, if such a node exists, then it must also be adjacent to m,
otherwise there is a direct connection violating Theorem 4.1 in II. However
this implies the existence of a direct connection of Type a[3.3] which is shorter
than @, contradicting the assumption. Hence Condition 6.1(i) is satisfied by
(11", R).

No node u can be adjacent to z; and to two nodes in the top path of I1”,
otherwise either u violates Theorem 2.1 in II” or II has a direct connection
violating Theorem 4.1. Hence Condition 6.1(ii) is satisfied by (II”, R).

Case 1.2 Every node adjacent to two nodes in the set {z,...,z;} and
to the neighbor of m in V(M) \ {v} is also adjacent to v.

Then a stabilized parachute occurs from V(Q)UV(IT)\ V(P,) by taking m
as the center node, z;,z; as the side nodes and v; as the bottom node. The
node v, is of Type f[2.1] relative to this parachute and forces Condition (i) to
hold in Definition 6.1 (otherwise there is an odd wheel). Finally, Condition
(i1) of Definition 6.1 holds for (II’, R) by assumption.

Case 2 Q = 1,,...,Z, is a direct connection of Type b{3.3].

Then, using the notation of Theorem 3.3, a stabilized parachute occurs
from V(Q)UV(II) by taking v, as the center node, b, z,, as the side nodes and
v as the bottom node. Node m is of Type f[2.1] relative to this parachute
and forces Condition (i) of Definition 6.1 to hold. Finally, assume there is a
node w adjacent to two nodes in the set {z,,...,z,} and to the neighbor of
vy in V(T'). Then, there is a direct connection from bottom to top of II which

contradicts Theorem 4.1, unless w is also adjacent to v. Therefore Condition
(31) of Definition 6.1 holds for (II', R).

Case 3 Q = 14,...,%, is a direct connection of Type c[3.3].
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Then, using the notation of Theorem 3.3, a stabilized parachute occurs
by taking v, as the center node, z,, z,, as the side nodes and v, as the bottom
node. The strongly adjacent nodes of Type f[2.1] relative to this parachute
are either all adjacent to the side node z; or all adjacent to the side node z,
(else there is an odd wheel). Since there are two possibilities for the path R,
namely the subpath of T from v; to ¢t and the path from v, to b, Condition
(i) of Definition 6.1 is satisfied by one of the choices for R. Next, we consider
Condition (ii). First, consider the case when R is the subpath of T' connecting
vy to t. If there is a node w adjacent to two nodes in the set {z,...,z,}
and to the neighbor of v; in T, then there is a direct connection from bottom
to top of Il which contradicts Theorem 4.1, unless w is also adjacent to v.
Therefore Condition (ii) holds. Now, consider the case when R connects v;
to b. If there is a node w adjacent to two nodes in the set {zy,...,z,} and
to the neighbor ¢ of v, in P,, then one of three possibilities occurs.

If w is also adjacent to v, Condition (ii) holds.

If w is not adjacent to v but is adjacent to at least one node of V(II) \
{v,q}, then there is a direct connection from bottom to top of II which
contradicts Theorem 4.1.

If w is not adjacent to any node of V(II) \ {q}, then there is a direct
connection of Type b[3.3] from bottom to top of II, and we have already
proved the existence of a stabilized parachute in this case.

Case 4 @Q is of Type al, bl, b2 or b3[4.1].
Then, after parachute modification, a path of Type a or b[3.3] arises and
the result has already been estabished above when such a path exists. D

Lemma 6.3 If1l is a stabilized parachute then the only possible direct con-
nections from bottom to top avoiding S(I1) are of Type b or ¢[3.3] or Type
b1, b2 or b3[4.1].

Proof: A direct connection of Type d[3.3] cannot occur since a stabilized
parachute has middle path of length 2. Similarly for Types d1, el and e2[4.1).
Now we show that a direct connection @ = z;,...,z, of Type a, e or {[3.3]
and Type al, e3 or e4[4.1} cannot occur.

Case 1 Path Q is of Type a[3.3].

It follows from Condition (i) of Definition 6.1 that, if z, is adjacent
to vi,m and b € V(P,), then r, is adjacent to node a, the neighbor
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of v; in P,. Nodes z3,...,z, are not adjacent to any of the nodes
T4,...,Tk_1, €lse there is a direct connection from bottom to top which
contradicts Theorem 4.1. Node r; has at most two neighbors in @, else
there exists a wheel with center rr. We consider three subcases based
on the number of neighbors of ry in {z3,...,z,}.

Case 1.1 Node r; is not adjacent to any node in the set {z3,...,z,}.

There is a wheel with center v; whether or not z, is adjacent at least
one node in the set {ry,...,r}.

Case 1.2 Node ry is adjacent to exactly one node ¢ € {z3,...,2,}.

If r is not adjacent to z,, then there is a 3PC(v,, q), whether or not
z, is adjacent to at least one node in {ry,...,r¢_1}. I r is adjacent
to z;, let z; be the node of {z3,...,z.} which is adjacent to m. The
nodes of @ in the subpath connecting q to z; together with the nodes
V(R)U {a} U V(T)U V(P;) U {m} induce a wheel with center v.

Case 1.3 Node r; is adjacent to exactly two nodes ¢1,¢2 € {z2,...,z.}.

Let z; be the node of {z3,...,z.} which is adjacent to m and, w.l.o.g.
let g; be the neighbor of r; which is closest to z;. The nodes of Q in
the subpath connecting z; to ¢, together with the nodes V(R) U {a} U
V(T)U V(P;) U {m} induce a wheel with center v.

Case 2 Path @ is of Type al[4.1].

By Condition (ii) of Definition 6.1, node z, is not adjacent to rx. There-
fore, after parachute modification, we are back in Case 1.

Case 3 Path Q is of Type €[3.3].

If some node of V(Q)\ {z1} is adjacent to at least one node of V(R) \
{rx}, then there is a direct connection from the bottom to the top of
IT different from those listed in Theorem 4.1(ii). So no such adjacency
exists. If z, is adjacent to two or more nodes of R, there is a wheel
with center z;. If z; is adjacent to exactly one node of R, then there is
a 3PC(z,,a), where a is the neighbor of v; in P;. So z; is not adjacent
to a node in R. If r; is adjacent to a node in @, then there is a wheel
with center v. If i is not adjacent to a node in @, then there is a wheel
with center v,.
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Case 4 Path @ is of Type {[3.3] or Type €2 or e3(Theorem 4.1).

No node of V(Q) \ {z:} is adjacent to V(R) \ {rx} since this would
contradict Theorem 4.1(ii). If z, is adjacent to a node in R, there is
a wheel with center z,. So z, is not adjacent to a node in R. If r;
is adjacent to a node in @, then there is a 3PC(zy,7r%). If & is not
adjacent to a node in @, then there is a wheel with center v;. D

Theorem 6.4 If G contains a stabilized parachute, then G has an extended
star cutset.

Proof: Among all parachutes that give rise to a stabilized parachute, let I1
be one with shortest top. We will show that S(II) is an extended star cutset,
i.e. a path Q of Type a-f[3.3] or al, bl-b3, d1, el-e4(4.1] cannot occur. For
Types a, d, e and {[3.3] and al, d1, el-e4[4.1], the result follows from Lemma
6.3.

Now consider the case where Q = z4,...,z, is a direct connection of Type
b{3.3] relative to II. Assume w.l.o.g. that z, is adjacent to the neighbor b of
vz in P,. Note that the extra path R has its first node r; adjacent either to b
or to the neighbor a of vy in P;. Construct the parachute IT' as follows. The
middle path of II' is M' = z,,m,z. The top path T' of I' is the subpath
of T connecting the two neighbors of z, in T, namely ¢t and v;. The side
path P, is identical to P; and the side path P, connects t to z, using nodes of
V(T)UV(P). The new extra path isinduced by {z,,...,z,—1}. We will show
that IT' defines a stabilized parachute with shorter top than II, contradicting
the choice of II. In order to prove that II' defines a stabilized parachute, we
need to check Conditions (i) and (ii) of Definition 6.1. Condition (i) holds
since t € V(T') and a node w of Type f[2.1] relative to II' which is adjacent
to t must also be adjacent to vy, else w violates Theorem 2.1 relative to II.
To see that Condition (i1) holds, consider a node y adjacent to z,_; and to
two nodes of T'. There is a direct connection which violates Theorem 4.1(i)
with respect to II, unless node y is adjacent to m. This completes the proof
that II' is an stabilized parachute.

Now consider the case where Q = z,,....z, is a direct connection of
Type bl-b3[4.1]. After parachute modification, we have a direct connection
of Type b[3.3] and the argument presented just above can be applied, since
the path R plays no role in it.
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There only remains the case where the path Q = z;,...,z, is of Type
c[3:3]. Assume w.l.o.g. that z; and z, are adjacent to v;. Then the first
node r, of the extra path R = ry,...,r, is adjacent to the neighbor of vy in
Py, by Condition (i) of Definition 6.1. Note that the nodes z,,...,z, are not
adjacent to ry,..., 7k, €lse there is a direct connection from bottom to top
which contradicts Theorem 3.3.

If r, is adjacent to at least one node in {z,...,z,}, then there is a
parachute with shorter top path obtained by replacing the center node v by
the node z, and replacing the extra path R by a chordless path from z, to
ry only involving nodes of (V(Q)\ {z,}) U V(R). Condition (i) of Definition
6.1 is satisfied since the new extra path still has 7, as first node. To see that
Condition (ii) holds, consider a node w adjacent to z,-, and to two nodes
of the new top. There is a direct connection which violates Theorem 4.1(i)
with respect to II, unless node w is adjacent to m.

If ri is not adjacent to any node in {z,,...,z,}, there is a wheel with
center v; whether or not z; is adjacent to V(R). O

Corollary 6.5 If G contains a parachute with long top and long sides, then
G has an ertended star cutset.

Proof: Follows from Theorem 4.1(i), Lemma 6.2 and Theorem 6.4. D

7 Parachutes with Short Middle Path

In this section, we assume that G is signable to be balanced but does not con-
tain wheels, connected squares, connected 6-holes and stabilized parachutes.
We show that, if G contains a parachute with long sides and short middle,
then G has an extended star cutset.

Definition 7.1 Fork > 2, a k-parachute [1* is defined as follows, see Figure
7. For k even, say k = 2p, II* consists of nodes v,m,vy,...,vp41,%1,...,
Tpr1,Y1y---sYpy 21y - - -4 Zp and chordless paths Pj, for j = 1,...,2p where:

e node v is adjacent to nodes m and vy, ..., Vp4,

e node m is adjacent to nodes v and z,..., zp,

e fort=1,...,p+1, node z, is adjacent to nodes v;,...,v,,
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e fort=1,...,p, node y; is adjacent to nodes vy,..., v,

o fort =1,...,p, path Py_, connects z; to z; and path P, connects y,
Lo ve4g,

o fori#j, V(B)NV(F;) =40,

o there are no adjacencies between the nodes of V(II¥) other than those
indicated above.

For k odd, say k = 2p+1, the k-parachute II* is obtained from I1*~! by adding
a node zpy, adjacent to m, a node y,41 adjacent to nodes z;,...,2p41 and a
chordless path Pyp4q connecting z,4y to zp41 whose inner nodes are distinct
Jrom V(ITI* 1) U{zp41, Yp+1} and are not adjacent to {yp41 UV (II* 1)\ {zp1}

This definition implies that a 2-parachute is a parachute with long side
paths P, P,, short middle path v, m, 2, and short top path vy, z2,vs.

Theorem 7.2 Assume that G is signable to be balanced but contains no
wheel, no connected squares, no connected 6-hole and no stabilized parachute.
If G contains a parachute with long sides and short middle, then G has an
eztended star cutset.

Proof: Consider a parachute II with long sides and short middle. If II
has long top, then G has an extended star cutset by Corollary 6.5. So we
assume II has a short top. As noted earlier, II is a 2-parachute. To establish
the theorem, we will prove the following claim.

Claim If G contains a k-parachute, for k > 2, then either G has an
eztended star cutset or G contains a k + 1-parachute.

Clearly, this claim implies that G has an extended star cutset since G is
a finite graph and therefore does not contain arbitrarily large k-parachutes.

Proof of Claim: First, consider the case & = 2. The 2-parachute reduces
to a parachute II with long sides, short middle and short top. If S(II) is not
an extended star cutset then, by Theorem 4.1(ii), there is a direct connection
Q of Type €[3.3], €2 or e3[4.1], since Type o[2.1], Type d{3.3] and Types d1,
el or e€2[4.1] cannot occur when the middle path is short, and Types a or
f[3.3] are excluded by the hypothesis of the theorem.
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Case 1 @ is of Type €[3.3)].

Using the notation of Theorem 3.3, this configuration of Type e contains
another parachute, with center node m, side nodes z,z; and bottom
node v;. Note that the sides are long. If the top path (connecting z
to z;) is long then, by Corollary 6.5, G has an extended star cutset. If
the path connecting z to z; has only one intermediate node, then the
resulting configuration is a 3-parachute.

Case 2 @ is of Type €2 or e3[4.1].

Whether @ is of Type €2 or €3 relative to II, in each case there are two
other parachutes with long top and short middle, say II; and II,: using
the notation of Theorem 4.1, the center node of II; is m, the middle
path is m,v,v,, one side path Q’ is the path connecting z; to v; with
nodes in V(Q) U {t,v,}, the other side path contains P;; for parachute
II,, the middle path is m, v, v,, one side path is Q’, the other side path
contains P,. If these parachutes have long top, then G has an extended
star cutset by Corollary 6.5. So we assume that II, and II; have a short
top. Applying Theorem 4.1(ii) to these parachutes, the only paths R
from bottom to top are of Type €[3.3], €2 or €3[4.1]. If the path R is
of a certain type relative to II,, then it is of the same type relative to
I1;, since the adjacencies between the first node of R and {v} U V(Q')
suffice to distinguish the three possibilities. Now, if R is of Type €2
or e3[4.1], the first node of R is a strongly adjacent node to Il which
contradicts Theorem 2.1. So R must be of Type ¢[3.3] relative to II;
and II,. Now we are back to Case 1 above. It follows that G contains
an extended star cutset or a 3-parachute.

Now, we consider a k-parachute II¥ with & > 3. First, we assume that k
is odd, say k = 2p + 1.

In the remainder of the proof, we consider several parachutes. The
parachute II* is obtained as follows. The middle path is m,v,vp41, with
vp41 as the bottom node; the side nodes are 2, and 2,4, and the side paths
are P, and P,,4, respectively; finally the top node is yp41. II” has long sides,
short top and short middle. By Theorem 4.1(ii), S(II*) is an extended star
cutset or there is a path Py, of Type €[3.3], €2 or €3[4.1] relative to II*.

The parachute II** is the same as I1* except that the bottom node v,y is
replaced by v, and the side path P,, is replaced by Py,_,. If the path Py,
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is of a certain type relative tu II*, then it is of the same type relative to
I1**, since the adjacencies between the first node of P4z and {v} U V(Pypys)
suffice to distinghish the three possibilities.

Now consider the parachute II*** with side paths P,,_; and P,,, middle
path v, m, z, and top path v,, 41, vp41. If Papya is of Type €2 or €3 (Theorem
4.1) relative to II* and ITI**, the first node of Pz is a strongly adjacent node
to I1*** which contradicts Theorem 2.1. So Pzy4+; must be of Type €[3.3]
relative to II* and II**. This implies that Py,y5 = Zp1a,Vp42,- - -, Yps1, Where
node 7,4, is adjacent to v, and vp41, and node v,y is adjacent to v. There
are no other adjacencies between V(Pzpy2) and {v,m}UV(Ppp_;) UV (Ppp)U
V(Pzp+1). To show that V(P,42) U V(ITF) induces a k + 1-parachute, it
remains to show that z,,, is adjacent to vy,...,vp_; and that Psp4, has no
common node with or adjacent node to P;, for 1 < j < 2p — 2.

Consider the parachute II; with middle path m, v, v; and side paths P,;_,
and Pypyy. The top node is yp41. The path P42 connects the bottom of
this parachute to the top and avoids S(II;), since z,4, is adjacent to v,4;
and vpy; is adjacent to z,4,, which belongs to the bottom part of II;. Since
Vp+1 is not adjacent to any node in P;;.,, the path Py, cannot be of Type
€2 or e3[4.1] relative to II;. Therefore it is a path of Type e[3.3] relative to
II;, implying that z,4, is adjacent to v;. Furthermore, there is no common
node or adjacency between P,,4; and Pj;_s.

Finally, consider the parachute H; with middle path m,v,v;, side paths
Py;-1 and Pypyy and top node y,.;. As above, Pyyy, is a path of Type €[3.3)
relative to H;. It follows that there is no common node or adjacency between
Papy2 and Pyj_y. Therefore V(Pyp4;) U V(IT¥) induces a k + 1-parachute.

When k > 4 is even, the proof is the same as for k odd, interchanging the
roles of v and m, v; and zj, z; and y;. O

8 The Parachute Theorem

Theorem 8.1 Assume G is a wheel-free bipartite graph which is signable to
be balanced but contains no extended star cutset, no connected squares, no
connected 6-hole and no Ryo. Let I be a parachute with long sides. Then I
has short top and long middle and there ezists a direct connection of Type
d[3.3] or d1f4.1]. Furthermore, any direct connection from bottom to top
avoiding S(II) is of one of these two types.

40

-




Proof: The proof follows by Theorems 4.1, 5.1, Lemma 6.2 and Theorems
6.4and 7.2. O
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